References
Section 1: Basic Characterization
Section 2: Pluripotency and the Undifferentiated State
Section 3: Genomic Characterization
Section 4: Stem Cell-based Model Systems
Appendix 1: Recommended Standard Characterization of Stem Cells
Appendix 2: Nomenclature Criteria
Appendix 3: Cell Culture Hygiene Practices
Appendix 5: Assessment of Methods for Genetic Analysis
Appendix 6: Reporting Practices for Publishing Results with Human Pluripotent and Tissue Stem
Allison, T.F., Smith, A.J.H., Anastassiadis, K., Sloane-Stanley, J., Biga, V., Stavish, D., Hackland, J., Sabri, S., Langerman, J., Jones, M., Plath, K., Coca, D., Barbaric, I., Gokhale, P., Andrews, P.W., 2018. Identification and Single-Cell Functional Characterization of an Endodermally Biased Pluripotent Substate in Human Embryonic Stem Cells. Stem Cell Rep. 10, 1895–1907. https://doi.org/10.1016/j.stemcr.2018.04.015
Almeida, J.L., Cole, K.D., Plant, A.L., 2016. Standards for Cell Line Authentication and Beyond. PLOS Biol. 14, e1002476. https://doi.org/10.1371/journal.pbio.1002476
American Type Culture Collection Standards Development Organization Workgroup ASN-0002, 2010. Cell line misidentification: the beginning of the end. Nat. Rev. Cancer 10, 441–448. https://doi.org/10.1038/ nrc2852
Andrews, P.W., Casper, J., Damjanov, I., Duggan-Keen, M., Giwercman, A., Hata, J., von Keitz, A., Looijenga, L.H.J., Millan, J.L., Oosterhuis, J.W., Pera, M., Sawada, M., Schmoll, H.-J., Skakkebæk, N.E., van Putten, W., Stern, P., 1996. Comparative analysis of cell surface antigens expressed by cell lines derived from human germ cell tumours. Int. J. Cancer 66, 806–816. https://doi.org/10.1002/(SICI)1097- 0215(19960611)66:6<806::AID-IJC17>3.0.CO;2-0
Artika, I.M., Ma’roef, C.N., 2017. Laboratory biosafety for handling emerging viruses. Asian Pac. J. Trop. Biomed. 7, 483–491. https://doi.org/10.1016/j.apjtb.2017.01.020
Avery, S., Hirst, A.J., Baker, D., Lim, C.Y., Alagaratnam, S., Skotheim, R.I., Lothe, R.A., Pera, M.F., Colman, A., Robson, P., Andrews, P.W., Knowles, B.B., 2013. BCL-XL Mediates the Strong Selective Advantage of a 20q11.21 Amplification Commonly Found in Human Embryonic Stem Cell Cultures. Stem Cell Rep. 1, 379–386. https://doi.org/10.1016/j.stemcr.2013.10.005
Avior, Y., Biancotti, J.C., Benvenisty, N., 2015. TeratoScore: Assessing the Differentiation Potential of Human Pluripotent Stem Cells by Quantitative Expression Analysis of Teratomas. Stem Cell Rep. 4, 967–974. https://doi.org/10.1016/j.stemcr.2015.05.006
Bairoch, A., 2018. The Cellosaurus, a Cell-Line Knowledge Resource. J. Biomol. Tech. JBT 29, 25–38. https://doi. org/10.7171/jbt.18-2902-002
Baker, M., 2016. 1,500 scientists lift the lid on reproducibility. Nature 533, 452–454. https://doi. org/10.1038/533452a
Baker, D., Hirst, A.J., Gokhale, P.J., Juarez, M.A., Williams, S., Wheeler, M., Bean, K., Allison, T.F., Moore, H.D., Andrews, P.W., Barbaric, I. 2016. Detecting Genetic Mosaicism in Cultures of Human Pluripotent Stem Cells. Stem Cell Rep. 7, 998-1012, https://doi.org/10.1016/j.stemcr.2016.10.003
Barbaric, I., Biga, V., Gokhale, P.J., Jones, M., Stavish, D., Glen, A., Coca, D., Andrews, P.W., 2014. Time-lapse analysis of human embryonic stem cells reveals multiple bottlenecks restricting colony formation and their relief upon culture adaptation. Stem Cell Rep. 3, 142–155. https://doi.org/10.1016/j. stemcr.2014.05.006
Barone, P.W., Wiebe, M.E., Leung, J.C., Hussein, I.T.M., Keumurian, F.J., Bouressa, J., Brussel, A., Chen, D., Chong, M., Dehghani, H., Gerentes, L., Gilbert, J., Gold, D., Kiss, R., Kreil, T.R., Labatut, R., Li, Y., Müllberg, J., Mallet, L., Menzel, C., Moody, M., Monpoeho, S., Murphy, M., Plavsic, M., Roth, N.J., Roush, D., Ruffing, M., Schicho, R., Snyder, R., Stark, D., Zhang, C., Wolfrum, J., Sinskey, A.J., Springs, S.L., 2020. Viral contamination in biologic manufacture and implications for emerging therapies. Nat. Biotechnol. 38, 563–572. https://doi.org/10.1038/s41587-020-0507-2
Ben-David, U., Arad, G., Weissbein, U., Mandefro, B., Maimon, A., Golan-Lev, T., Narwani, K., Clark, A.T., Andrews, P.W., Benvenisty, N., Carlos Biancotti, J., 2014. Aneuploidy induces profound changes in gene expression, proliferation and tumorigenicity of human pluripotent stem cells. Nat. Commun. 5, 4825. https://doi.org/10.1038/ncomms5825
Bock, C., Kiskinis, E., Verstappen, G., Gu, H., Boulting, G., Smith, Z.D., Ziller, M., Croft, G.F., Amoroso, M.W., Oakley, D.H., Gnirke, A., Eggan, K., Meissner, A., 2011. Reference Maps of Human ES and iPS Cell Variation Enable High-Throughput Characterization of Pluripotent Cell Lines. Cell 144, 439–452. https://doi. org/10.1016/j.cell.2010.12.032
Bubela, T., Guebert, J., Mishra, A., 2015. Use and Misuse of Material Transfer Agreements: Lessons in Proportionality from Research, Repositories, and Litigation. PLOS Biol. 13, e1002060. https://doi. org/10.1371/journal.pbio.1002060
Bykowski, T., Stevenson, B., 2020. Aseptic Technique. Curr. Protoc. Microbiol. 56. https://doi.org/10.1002/cpmc.98 Casadevall, A., Steen, R.G., Fang, F.C., 2014. Sources of error in the retracted scientific literature. FASEB J. 28, 3847–3855. https://doi.org/10.1096/fj.14-256735
Chernov, V.M., Chernova, O.A., Sanchez-Vega, J.T., Kolpakov, A.I., Ilinskaya, O.N., 2014. Mycoplasma Contamination of Cell Cultures: Vesicular Traffic in Bacteria and Control over Infectious Agents. Acta Naturae 6, 41–51.
Cimolai, N., 2001. Do mycoplasmas cause human cancer? Can. J. Microbiol. 47, 691–697.
Coecke, S., Balls, M., Bowe, G., Davis, J., Gstraunthaler, G., Hartung, T., Hay, R., Merten, O.-W., Price, A., Schechtman, L., Stacey, G., Stokes, W., 2005. Guidance on Good Cell Culture Practice: A Report of the Second ECVAM Task Force on Good Cell Culture Practice. Altern. Lab. Anim. 33, 261–287. https://doi. org/10.1177/026119290503300313
Corral-Vázquez, C., Aguilar-Quesada, R., Catalina, P., Lucena-Aguilar, G., Ligero, G., Miranda, B., Carrillo-Ávila, J.A., 2017. Cell lines authentication and mycoplasma detection as minimun quality control of cell lines in biobanking. Cell Tissue Bank. 18, 271–280. https://doi.org/10.1007/s10561-017-9617-6
Crook, J.M., Hei, D., Stacey, G., 2010. The International Stem Cell Banking Initiative (ISCBI): raising standards to bank on. Vitro Cell. Dev. Biol. - Anim. 46, 169–172. https://doi.org/10.1007/s11626-010-9301-7
Crook, J.M., Ludwig, T.E. (Eds.), 2017. Stem Cell Banking: Concepts and Protocols, Methods in Molecular Biology. Springer New York, New York, NY. https://doi.org/10.1007/978-1-4939-6921-0
Crook, J.M., Stacey, G.N., 2014. Setting Quality Standards for Stem Cell Banking, Research and Translation: The International Stem Cell Banking Initiative, in: Ilic, D. (Ed.), Stem Cell Banking, Stem Cell Biology and Regenerative Medicine. Springer New York, New York, NY, pp. 3–9. https://doi.org/10.1007/978-1-4939- 0585-0_1
Damjanov, I., Andrews, P.W., 2016. Teratomas produced from human pluripotent stem cells xenografted into immunodeficient mice - a histopathology atlas. Int. J. Dev. Biol. 60, 337–419. https://doi.org/10.1387/ ijdb.160274id
Draper, J.S., Smith, K., Gokhale, P., Moore, H.D., Maltby, E., Johnson, J., Meisner, L., Zwaka, T.P., Thomson, J.A., Andrews, P.W., 2004. Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nat. Biotechnol. 22, 53–54. https://doi.org/10.1038/nbt922
Drexler, H.G., Uphoff, C.C., 2002. Mycoplasma contamination of cell cultures: Incidence, sources, effects, detection, elimination, prevention. Cytotechnology 39, 75–90. https://doi.org/10.1023/A:1022913015916
Drucker, D.J., 2016. Never Waste a Good Crisis: Confronting Reproducibility in Translational Research. Cell Metab. 24, 348–360. https://doi.org/10.1016/j.cmet.2016.08.006
European Pharmacopoeia Method 2.6.1 Sterility, 2022.
Farzaneh, M., 2021. Concise Review; Effects of Antibiotics and Antimycotics on the Biological Properties of Human
Pluripotent and Multipotent Stem Cells. Curr. Stem Cell Res. Ther. 16, 400–405. https://doi.org/10.2174/1574888X16999201203214425
Freedman, L.P., Cockburn, I.M., Simcoe, T.S., 2015. The Economics of Reproducibility in Preclinical Research. PLOS Biol. 13, e1002165. https://doi.org/10.1371/journal.pbio.1002165
Georgakopoulos, Nikitas, Nicole Prior, Brigitte Angres, Gianmarco Mastrogiovanni, Alex Cagan, Daisy Harrison, Christopher J. Hindley, et al. “Long-Term Expansion, Genomic Stability and in Vivo Safety of Adult Human Pancreas Organoids.” BMC Developmental Biology 20, no. 1 (February 26, 2020): 4. https://doi. org/10.1186/s12861-020-0209-5
Guidance: Rigor and Reproducibility in Grant Applications, 2019. https://grants.nih.gov/policy/reproducibility/ guidance.htm
Halliwell, J., Barbaric, I., Andrews, P.W., 2020. Acquired genetic changes in human pluripotent stem cells: origins and consequences. Nat. Rev. Mol. Cell Biol. 21, 715–728. https://doi.org/10.1038/s41580-020-00292-z
Haridhasapavalan, K.K., Borgohain, M.P., Dey, C., Saha, B., Narayan, G., Kumar, S., Thummer, R.P., 2019. An insight into non-integrative gene delivery approaches to generate transgene-free induced pluripotent stem cells. Gene 686, 146–159. https://doi.org/10.1016/j.gene.2018.11.069
Hay, R.J., Macy, M.L., Chen, T.R., 1989. Mycoplasma infection of cultured cells. Nature 339, 487–488. https://doi. org/10.1038/339487a0
Horbach, S.P.J.M., Halffman, W., 2017. The ghosts of HeLa: How cell line misidentification contaminates the scientific literature. PLOS ONE 12, e0186281. https://doi.org/10.1371/journal.pone.0186281
International Society for Biological and Environmental Repositories (ISBER), 2005. Best Practices for Repositories I: Collection, Storage, and Retrieval of Human Biological Materials for Research. Cell Preserv. Technol. 3, 5–48. https://doi.org/10.1089/cpt.2005.3.5
ISSCR Guidelines for Stem Cell Research and Clinical Translation, 2021. https://www.isscr.org/guidelines
Keller, A., Lei, Y., Krivec, N., de Deckersberg, E.C., Dziedzicka, D., Markouli, C., Sermon, K., Geens, M., Spits, C., 2021. Gains of 12p13.31 delay WNT-mediated initiation of hPSC differentiation and promote residual pluripotency in a cell cycle dependent manner (preprint). Cell Biology. https://doi. org/10.1101/2021.05.22.445238
Kurtz, A., Seltmann, S., Bairoch, A., Bittner, M.-S., Bruce, K., Capes-Davis, A., Clarke, L., Crook, J.M., Daheron, L., Dewender, J., Faulconbridge, A., Fujibuchi, W., Gutteridge, A., Hei, D.J., Kim, Y.-O., Kim, J.-H., Kokocinski, A.K.-, Lekschas, F., Lomax, G.P., Loring, J.F., Ludwig, T., Mah, N., Matsui, T., Müller, R., Parkinson, H., Sheldon, M., Smith, K., Stachelscheid, H., Stacey, G., Streeter, I., Veiga, A., Xu, R.-H., 2018. A Standard Nomenclature for Referencing and Authentication of Pluripotent Stem Cells. Stem Cell Rep. 10, 1–6. https://doi.org/10.1016/j.stemcr.2017.12.002
Langdon, S.P., 2003. Cell Culture Contamination: An Overview, in: Cancer Cell Culture. Humana Press, New Jersey, pp. 309–318. https://doi.org/10.1385/1-59259-406-9:309
Lee, C.-T., Bendriem, R.M., Kindberg, A.A., Worden, L.T., Williams, M.P., Drgon, T., Mallon, B.S., Harvey, B.K., Richie, C.T., Hamilton, R.S., Chen, J., Errico, S.L., Tsai, S.-Y.A., Uhl, G.R., Freed, W.J., 2015. Functional Consequences of 17q21.31/WNT3-WNT9B Amplification in hPSCs with Respect to Neural Differentiation. Cell Reports 10, 616–632. https://doi.org/10.1016/j.celrep.2014.12.050
Lezmi, E. and Benvenisty, N. 2021. Identification of Cancer-Related Mutations in Human Pluripotent Stem Cells Using RNA-seq Analysis. Nat Protoc. 16, 4522-4537, https://doi.org/10.1038/s41596-021-00591-5.
Llobet, L., Montoya, J., López-Gallardo, E., Ruiz-Pesini, E., 2015. Side Effects of Culture Media Antibiotics on Cell Differentiation. Tissue Eng. Part C Methods 21, 1143–1147. https://doi.org/10.1089/ten.tec.2015.0062
Lord, S.J., Velle, K.B., Mullins, R.D., Fritz-Laylin, L.K., 2020. SuperPlots: Communicating reproducibility and variability in cell biology. J. Cell Biol. 219, e202001064. https://doi.org/10.1083/jcb.202001064
Markouli, C., Couvreu De Deckersberg, E., Regin, M., Nguyen, H.T., Zambelli, F., Keller, A., Dziedzicka, D., De Kock, J., Tilleman, L., Van Nieuwerburgh, F., Franceschini, L., Sermon, K., Geens, M., Spits, C., 2019. Gain of 20q11.21 in Human Pluripotent Stem Cells Impairs TGF-β-Dependent Neuroectodermal Commitment. Stem Cell Rep. 13, 163–176. https://doi.org/10.1016/j.stemcr.2019.05.005
Mayshar, Y., Ben-David, U., Lavon, N., Biancotti, J.-C., Yakir, B., Clark, A.T., Plath, K., Lowry, W.E., Benvenisty, N., 2010. Identification and Classification of Chromosomal Aberrations in Human Induced Pluripotent Stem Cells. Cell Stem Cell 7, 521–531. https://doi.org/10.1016/j.stem.2010.07.017
McGarrity, G.J., Vanaman, V., Sarama, J., 1984. Cytogenetic effects of mycoplasmal infection of cell cultures: A review. In Vitro 20, 1–18. https://doi.org/10.1007/BF02633326
Merkle, F.T., Ghosh, S., Kamitaki, N., Mitchell, J., Avior, Y., Mello, C., Kashin, S., Mekhoubad, S., Ilic D., Charlton, M., Saphier, G., Handsaker, R.E., Genovese, G., Bar, S., Benvenisty, N., McCarroll, S.A., Eggan, K. 2017. Human Pluripotent Stem Cells Recurrently Acquire and Expand Dominant Negative P53 Mutations. Nature 545, 229-233, https://doi.org/10.1038/nature22312
Merten, O.-W., 2002. [No title found]. Cytotechnology 39, 91–116. https://doi.org/10.1023/A:1022969101804
Nature Editorial: Reducing our irreproducibility, 2013. . Nature 496, 398–398. https://doi.org/10.1038/496398a
Nelson-Rees, W.A., Flandermeyer, R.R., 1977. Inter- and Intraspecies Contamination of Human Breast Tumor Cell Lines HBC and BrCa5 and Other Cell Cultures. Science 195, 1343–1344. https://doi.org/10.1126/ science.557237
Nguyen, H.T., Geens, M., Mertzanidou, A., Jacobs, K., Heirman, C., Breckpot, K., Spits, C., 2014. Gain of 20q11.21 in human embryonic stem cells improves cell survival by increased expression of Bcl-xL. MHR: Basic science of reproductive medicine 20, 168–177. https://doi.org/10.1093/molehr/gat077
OECD Best Practice Guidelines for Biological Resource Centres, 2007. https://www.oecd.org/sti/emergingtech/38777417.pdf
Okita, K., Ichisaka, T., Yamanaka, S., 2007. Generation of germline-competent induced pluripotent stem cells. Nature 448, 313–317. https://doi.org/10.1038/nature05934
Olariu, V., Harrison, N.J., Coca, D., Gokhale, P.J., Baker, D., Billings, S., Kadirkamanathan, V., Andrews, P.W., 2010. Modeling the evolution of culture-adapted human embryonic stem cells. Stem Cell Res. 4, 50–56. https://doi.org/10.1016/j.scr.2009.09.001
Pamies, D., Bal-Price, A., Simeonov, A., Tagle, D., Allen, D., Gerhold, D., Yin, D., Pistollato, F., Inutsuka, T., Sullivan, K., Stacey, G., Salem, H., Leist, M., Daneshian, M., Vemuri, M., McFarland, R., Coecke, S., Fitzpatrick, S., Lakshmipathy, U., Mack, A., Wang, W.B., Yamazaki, D., Sekino, Y., Kanda, Y., Smirnova, L., Hartung, T., 2016. Good Cell Culture Practice for stem cells and stem-cell-derived models. ALTEX. https://doi. org/10.14573/altex.1607121
Pamies, D., Estevan, C., Vilanova, E., Sogorb, M., 2022. Alternative methods to animal experimentation for testing developmental toxicity in Reproductive and developmental toxicology, Third edition. ed. Academic Press, an imprint of Elsevier, Amsterdam.
Price, C.J., Stavish, D., Gokhale, P.J., Stevenson, B.A., Sargeant, S., Lacey, J., Rodriguez, T.A., Barbaric, I., 2021. Genetically variant human pluripotent stem cells selectively eliminate wild-type counterparts through YAP-mediated cell competition. Dev. Cell 56, 2455-2470.e10. https://doi.org/10.1016/j.devcel.2021.07.019
Romorini, L., Riva, D.A., Blüguermann, C., Videla Richardson, G.A., Scassa, M.E., Sevlever, G.E., Miriuka, S.G., 2013. Effect of Antibiotics against Mycoplasma sp. on Human Embryonic Stem Cells Undifferentiated Status, Pluripotency, Cell Viability and Growth. PLoS ONE 8, e70267. https://doi.org/10.1371/journal. pone.0070267
Ryu, A.H., Eckalbar, W.L., Kreimer, A., Yosef, N., Ahituv, N., 2017. Use antibiotics in cell culture with caution: genome-wide identification of antibiotic-induced changes in gene expression and regulation. Sci. Rep. 7, 7533. https://doi.org/10.1038/s41598-017-07757-w
Sanders, E.R., 2012. Aseptic Laboratory Techniques: Volume Transfers with Serological Pipettes and Micropipettors. J. Vis. Exp. 2754. https://doi.org/10.3791/2754
Sarntivijai, S., Lin, Y., Xiang, Z., Meehan, T.F., Diehl, A.D., Vempati, U.D., Schürer, S.C., Pang, C., Malone, J., Parkinson, H., Liu, Y., Takatsuki, T., Saijo, K., Masuya, H., Nakamura, Y., Brush, M.H., Haendel, M.A., Zheng, J., Stoeckert, C.J., Peters, B., Mungall, C.J., Carey, T.E., States, D.J., Athey, B.D., He, Y., 2014. CLO: The cell line ontology. J. Biomed. Semant. 5, 37. https://doi.org/10.1186/2041-1480-5-37
Schlaeger, T.M., Daheron, L., Brickler, T.R., Entwisle, S., Chan, K., Cianci, A., DeVine, A., Ettenger, A., Fitzgerald, K., Godfrey, M., Gupta, D., McPherson, J., Malwadkar, P., Gupta, M., Bell, B., Doi, A., Jung, N., Li, X., Lynes, M.S., Brookes, E., Cherry, A.B.C., Demirbas, D., Tsankov, A.M., Zon, L.I., Rubin, L.L., Feinberg, A.P., Meissner, A., Cowan, C.A., Daley, G.Q., 2015. A comparison of non-integrating reprogramming methods. Nat. Biotechnol. 33, 58–63. https://doi.org/10.1038/nbt.3070
Shin, M.-G., Kaye, J.A., Amirani, N., Lam, S., Thomas, R., Finkbeiner, S., 2022. RMeDPower for Biology: guiding design, experimental structure and analyses of repeated measures data for biological studies (preprint). Cell Biology. https://doi.org/10.1101/2022.07.18.500490
Skubis, A., Gola, J., Sikora, B., Hybiak, J., Paul-Samojedny, M., Mazurek, U., Łos, M., 2017. Impact of Antibiotics on the Proliferation and Differentiation of Human Adipose-Derived Mesenchymal Stem Cells. Int. J. Mol. Sci. 18, 2522. https://doi.org/10.3390/ijms18122522
Souren, N.Y., Fusenig, N.E., Heck, S., Dirks, W.G., Capes Davis, A., Bianchini, F., Plass, C., 2022. Cell line authentication: a necessity for reproducible biomedical research. EMBO J. 41. https://doi.org/10.15252/ embj.2022111307
Stacey, G.N., 2011. Cell Culture Contamination, in: Cree, I.A. (Ed.), Cancer Cell Culture, Methods in Molecular Biology. Humana Press, Totowa, NJ, pp. 79–91. https://doi.org/10.1007/978-1-61779-080-5_7
Stacey, G.N., Crook, J.M., Hei, D., Ludwig, T., 2013. Banking Human Induced Pluripotent Stem Cells: Lessons Learned from Embryonic Stem Cells? Cell Stem Cell 13, 385–388. https://doi.org/10.1016/j. stem.2013.09.007
Steeg, R., Mueller, S.C., Mah, N., Holst, B., Cabrera-Socorro, A., Stacey, G.N., De Sousa, P.A., Courtney, A., Zimmermann, H., 2021. EBiSC best practice: How to ensure optimal generation, qualification, and distribution of iPSC lines. Stem Cell Rep. 16, 1853–1867. https://doi.org/10.1016/j.stemcr.2021.07.009
The International Stem Cell Banking Initiative, 2009. Consensus Guidance for Banking and Supply of Human Embryonic Stem Cell Lines for Research Purposes. Stem Cell Rev. Rep. 5, 301–314. https://doi. org/10.1007/s12015-009-9085-x
The International Stem Cell Initiative, 2011. Screening ethnically diverse human embryonic stem cells identifies a chromosome 20 minimal amplicon conferring growth advantage. Nat. Biotechnol. 29, 1132–1144. https:// doi.org/10.1038/nbt.2051
The International Stem Cell Initiative, 2007. Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nat. Biotechnol. 25, 803–816. https://doi.org/10.1038/nbt1318
The Steering Committee of the International Stem Cell Initiative, 2005. The International Stem Cell Initiative: toward benchmarks for human embryonic stem cell research. Nat. Biotechnol. 23, 795–797. https://doi. org/10.1038/nbt0705-795
Tsai, S., Wear, D.J., Shih, J.W., Lo, S.C., 1995. Mycoplasmas and oncogenesis: persistent infection and multistage malignant transformation. Proc. Natl. Acad. Sci. 92, 10197–10201. https://doi.org/10.1073/pnas.92.22.10197
Uphoff, C.C., Denkmann, S.A., Steube, K.G., Drexler, H.G., 2010. Detection of EBV, HBV, HCV, HIV-1, HTLV-I and -II, and SMRV in human and other primate cell lines. J Biomed Biotechnol 2010, 904767. https://doi. org/10.1155/2010/904767
Varghese, D.S., Parween, S., Ardah, M.T., Emerald, B.S., Ansari, S.A., 2017. Effects of Aminoglycoside Antibiotics on Human Embryonic Stem Cell Viability during Differentiation In Vitro. Stem Cells Int. 2017, 1–18. https://doi. org/10.1155/2017/2451927
Weissbein, U., Ben-David, U., Benvenisty, N., 2014. Virtual Karyotyping Reveals Greater Chromosomal Stability in Neural Cells Derived by Transdifferentiation than Those from Stem Cells. Cell Stem Cell 15, 687–691. https://doi.org/10.1016/j.stem.2014.10.018
Werbowetski-Ogilvie, T.E., Bossé, M., Stewart, M., Schnerch, A., Ramos-Mejia, V., Rouleau, A., Wynder, T., Smith, M.-J., Dingwall, S., Carter, T., Williams, C., Harris, C., Dolling, J., Wynder, C., Boreham, D., Bhatia, M., 2009. Characterization of human embryonic stem cells with features of neoplastic progression. Nat Biotechnol 27, 91–97. https://doi.org/10.1038/nbt.1516
Zhang, J., Hirst, A.J., Duan, F., Qiu, H., Huang, R., Ji, Y., Bai, L., Zhang, F., Robinson, D., Jones, M., Li, L., Wang,
P., Jiang, P., Andrews, P.W., Barbaric, I., Na, J., 2019. Anti-apoptotic Mutations Desensitize Human Pluripotent Stem Cells to Mitotic Stress and Enable Aneuploid Cell Survival. Stem Cell Reports 12, 557–571. https://doi.org/10.1016/j.stemcr.2019.01.013 Zhang, S., Tsai, S., Lo, S.-C., 2006. Alteration of gene expression profiles during mycoplasma-induced malignant cell transformation. BMC Cancer 6, 116. https://doi.org/10.1186/1471-2407-6-116
The ISSCR's Standards for Human Stem Cell Use in Research are strictly copyrighted by the society. No part of this document may be produced in any form without written permission of The International Society for Stem Cell Research. Contact isscr@isscr.org for more information.
©2023 by The International Society for Stem Cell Research. All rights reserved.